
1

Managed Service Accounts: Understanding, Implementing, Best Practices, and

Troubleshooting

One of the more interesting new features of Windows Server 2008 R2/Server 2012 and Windows

7/8is Managed Service Accounts. MSA’s allow you to create an account in Active Directory that

is tied to a specific computer. That account has its own complex password and is maintained

automatically. This means that an MSA can run services on a computer in a secure and easy to

maintain manner, while maintaining the capability to connect to network resources as a specific

user principal.

Today I will:

 Describe how MSA works

 Explain how to implement MSA’s

 Cover some limitations of MSA’s

 Troubleshoot a few common issues with MSA’s

Let’s be about it.

How Managed Service Accounts Work

The Windows Server 2008 R2 AD Schema introduces a new object class called msDS-

ManagedServiceAccount. Create an MSA, examine its objectClass attribute, and notice the

object has an interesting object class inheritance structure:

Computer
msDS-ManagedServiceAccount
organizationalPerson
Top
User

The object is a user and a computer at the same time, just like a computer account. But it does

not have an object class of person like a computer account typically would; instead it has msDS-

ManagedServiceAccount. MSA’s inherit from a parent object class of “Computer”, but they are

also users. MSA objects do not contain new attributes from the Win2008 R2 schema update.

And this leads me to how MSA’s handle passwords – it’s pretty clever. An MSA is a quasi-

computer object that utilizes the same password update mechanism used by computer objects.

So, the MSA account password is updated when the computer updates its password (every 30

days by default). This can be controlled - just like a computer’s password - with the following

two DWORD values:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NetLogon\Parameters

http://support.microsoft.com/default.aspx?scid=kb;EN-US;175468
http://support.microsoft.com/default.aspx?scid=kb;EN-US;175468

2

DisablePasswordChange = [0 or 1, default if value name does not exist is 0]

MaximumPasswordAge = [1-1,000,000 in days, default if value name does not exist is 30]

MSA’s, like computers, do not observe domain or fine-grained password policies. MSA’s use a

complex, automatically generated password (240 bytes, which is 120 characters, and

cryptographically random). MSA’s cannot be locked out, and cannot perform interactive logons.

Administrators can set an MSA password to a known value, although there’s ordinarily no

justifiable reason (and they can be reset on demand; more on this later).

All Managed Service Accounts are created (by default) in the new CN=Managed Service

Accounts, DC=<domain>, DC=<com> container. You can see this by configuring DSA.MSC to

show “Advanced Features”:

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_2.png

3

As you will see later though, there isn’t much point to looking at this in AD Users and

Computers because… wait for it… all your administration will be done through PowerShell.

You knew that was coming, didn’t you?

MSA’s automatically maintain their Kerberos Service Principal Names (SPN), are linked to one

computer at a time, and support delegation. A network capture shows a correctly configured

MSA using Kerberos:

Implementing MSA’s

Forest and OS Requirements

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_4.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_6.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_8.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_4.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_6.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_8.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_4.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_6.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_8.png

4

To use MSAs you must:

 Use Active Directory

 Extend your AD schema to Windows Server 2008 R2

 Host services using MSAs on Windows Server 2008 R2/2012 and Windows 7/8

computers (MSAs cannot be installed on down-level operating systems)

 PowerShell, AD PowerShell (part of the RSAT), and the .Net 3.5x framework enabled on

any computers using or configuring MSAs

MSAs do not require a specific Forest Functional Level, but there is a scenario where part of

MSA fucntionality requires a Windows Server 2008 Domain Fcuntional Level. This means:

 If your domain is Windows Server 2008 R2 functional level, automatic passwords and

SPN management will work

 If your domain is less than WIndows Server 2008 R2 Domain Functional Level,

automatic passwords will work. Automatic SPN management will not work, and SPN’s

will have to be maintained by administrators

Deployment

Using a new MSA always works in four steps:

1. You create the MSA in AD.

2. You associate the MSA with a computer in AD.

3. You install the MSA on the computer that was associated.

4. You configure the service(s) to use the MSA.

We begin by using PowerShell to create the new MSA in Active Directory. You can run this

command on Windows Server 2008 R2 or Windows 7 computer that has the RSAT feature

“Active Directory Module for Windows PowerShell” enabled. Perform all commands as an

administrator.

1. Start PowerShell.

2. Import the AD module with:

Import-Module ActiveDirectory

3. Create an MSA with:

New-ADServiceAccount -Name <some new unique MSA account name> -Enabled $true

http://technet.microsoft.com/en-us/library/cc733027%28WS.10%29.aspx

5

4. Associate the new MSA with a target computer in Active Directory:

Add-ADComputerServiceAccount -Identity <the target computer that needs an MSA> -
ServiceAccount <the new MSA you created in step 3>

5. Now logon to the target computer where the MSA is going to be running. Ensure the

following features are enabled:

 Active Directory Module for Windows PowerShell

 .NET Framework 3.5.1 Feature

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_10.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_12.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_10.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_12.png

6

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_14.png

7

6. Start PowerShell.

7. Import the AD module with:

Import-Module ActiveDirectory

8. Install the MSA with:

Install-ADServiceAccount -Identity <the new MSA you created in step 3>

Note: Besides being a local administrator on the computer, the account installing the MSA needs

to have permissions to modify the MSA in AD. If a domain admin this "just works"; otherwise,

you would need to delegate modify permissions to the service account's AD object.

9. Now you can associate the new MSA with your service(s).

The GUI way:

a. Start services.msc.

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_16.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_18.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_16.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_18.png

8

b. Edit your service properties.

c. On the Log On tab, set “This Account” to the domain\name$ of your MSA. So if your MSA

was called “AskDS” in the “contoso.com” domain, it would be:

contoso\askds$

d. Remove all information from Password and Confirm password – they should not contain any

data:

e. Click Apply and Ok to the usual “Logon as a Service Right granted” message:

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_20.png

9

f. Start the service. It should run without errors.

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_22.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image57.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_22.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image57.png

10

The PowerShell way:

a. Start PowerShell.

b. Paste this sample script into a text file:

Sample script for setting the MSA password through PowerShell
Provided "AS IS" with no warranties, and confers no rights.
See http://www.microsoft.com/info/cpyright.mspx

Edit this section:

$MSA="contoso\askds$"
$ServiceName="'testsvc'"

Don't edit this section:

$Password=$null
$Service=Get-Wmiobject win32_service -filter "name=$ServiceName"
$InParams = $Service.psbase.getMethodParameters("Change")
$InParams["StartName"] = $MSA
$InParams["StartPassword"] = $Password
$Service.invokeMethod("Change",$InParams,$null)

c. Modify the highlighted red sections to correctly configure your MSA and service name.

d. Save the text file as MSA.ps1.

e. In your PowerShell console, get your script policy with:

Get-ExecutionPolicy

http://www.microsoft.com/info/cpyright.mspx
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image60.png

11

f. Set your execution policy to remote signing only:

Set-ExecutionPolicy remotesigned

g. Run the script:

h. Set your execution policy back to whatever you had returned in step E:

Note: Obviously, I made this example very manual; it could easily be automated completely.

That’s the whole point of PowerShell after all. Also, it is ok to shake your fist at us for not

having the User and Password capabilities in the V2 PowerShell cmdlet Set-Service. Grrr.

Removal

Removing an MSA is a simple two-part process. Now that you know all the PowerShell

rigmarole, here are the two things you do:

1. Use the following PowerShell cmdlet to remove the MSA from a local computer:

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_28.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_30.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_32.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_34.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_28.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_30.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_32.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_34.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_28.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_30.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_32.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_34.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_28.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_30.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_32.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_34.png

12

Remove-ADServiceAccount –identity <your MSA name>

2. Optionally, remove the service account from Active Directory. You can skip this step if you

just want to reassign an existing MSA from one computer to another.

Remove-ADComputerServiceAccount –Identity <the computer the MSA was assigned to
previously> -ServiceAccount <the MSA>

Group Memberships

The Set-ADServiceAccount and New-ADServiceAccount cmdlets do not allow you to make

MSA’s members of groups. To do this you will instead use DSA.MSC or Add-

ADGroupMember.

AD Users and Computers method:

1. Start DSA.MSC.

2. Select the group (not the MSA).

3. Add the MSA through the Members tab:

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_36.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_38.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_36.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_38.png

13

PowerShell method:

1. Start PowerShell.

2. Run:

Add-ADGroupMember "<your group>" "<DN of the MSA>"

So for example:

Note: Use the distinguished name of the MSA; otherwise Add-ADGroupMember will return

“cannot find object with identity”. Don’t try to use NET GROUP as it doesn’t know how to find

MSA’s.

Limitations

http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_40.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_42.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_40.png
http://blogs.technet.com/blogfiles/askds/WindowsLiveWriter/ManagedServiceAccountsUnderstandingImple_B000/image_42.png

14

Managed Service Accounts are useful in most service scenarios. There are limits though, and

understanding these up front will save you planning time later.

 MSA’s cannot span multiple computers – An MSA is tied to a specific computer. It

cannot be installed on more than one computer at once. In practical terms, this means

MSAs cannot be used for:

o Cluster nodes

o Authenticated load-balancing using Kerberos for a group of web servers

The MSA can only exist on one computer at a time; therefore, MSAs are not compatible with

cluster fail-over scenarios. And authentication through a load balancer would require you to

provide a Kerberos SPN of the MSA account-- that won’t work either. Load balancing scenarios

include Microsoft software-based and third-party hardware and software-based load balancing

solutions. If you’re clustering or NLB’ing, then you are still going to need to use old fashioned

service accounts.

A key clarification: You can have multiple MSAs installed on a single computer. So if you have

an application that uses 5 services, it’s perfectly alright to use one MSA on all five services or

five different MSA’s at once.

 The supportability of an MSA is determined by the component, not Windows – Just

because you can configure an MSA on a service doesn’t mean that the folks who make

that service support the configuration. So, if the SQL team here says “we don’t support

MSA’s on version X”, that’s it. You have to convince them to support their products, not

me :-). Some good places to start asking, as we get closer to the general availability of

Windows Server 2008 R2 in October:

